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Outline

» Recognized Relevance of Fluxes by National and International Programs
» Upcoming Activities that are critically dependent on fluxes

» Earth Systems Modeling

» Grand Challenges

> International groups that focus on observational requirements for climate
» Many groups (3 or 4 letter acronyms) want to establish requirements
» As of yet, there are few requirements on surface fluxes
» Most flux-related bulk variables are considered, but not for fluxes

» A new Implementation Plan for the Global Climate Observing System
» To be drafted late 2016

» We are considering adding surface fluxes and Essential Climate Variab
les

GCOS » GOOS = WCRP oopc



Recognized Relevance of Fluxes

» National Programs
» NASA NEWS — NASA Energy and Water Cycle
» Contributions to the Energy and Water Cycle
» NOAA Climate Observing Division (COD)
» National Ocean Forecasting Agencies
» International Programs
» TIE-OHC
> Seaflux
» WCRP — World Climate Research Program
» GEWEX — Global Energy and Water EXchanges
» CLIVAR
» Research Coordination Network (RCN)
» Global Ocean Observing System (GOOS)
» Global Climate Observing System (GCOS)

GCOS » GOOS = WCRP oopc



US National Programs — Potential for collaboration

» NASA NEWS — NASA Energy and Water Cycle
» Contributions to the Energy and Water Cycle

» A new team was put together in late 2014 and early 2015
» A plausible group for collaboration
» NOAA Climate Observing Division (COD)
» Researchers identified surface fluxes as the leading cause of error
> National Ocean Forecasting Agencies
» For example, the US Naval Research Laboratory

» Some of these have strong programs on satellite remote sensing and on
surface fluxes

GCOS = G005 = WCRP oopc



High Level International Programs
» WCRP — World Climate Research Program

» Trying to understand the water and energy cycle

» Climate Variability in the Oceans

» WCRP, ECMWF, and NCAR are all moving forward or planning to m
ove forward with Earth Systems Modeling

» Surface fluxes will become of greater importance for validation of
processes

» Research Coordination Network (RCN)
» Supported by US National Science Foundation, IGARSS, others?
» Crosses disciplines and geographical boundaries
» Global Ocean Observing System (GOOS)
» Folks that Brought us the Framework for Ocean Observations
> Brings together physical, biogeochemical, and biological programs
» Global Climate Observing System (GCOS)
> Sets requirements for climate quality observations
» Considering elevating the importance of surface fluxes

GCOS = G005 = WCRP oopc



GOOS’s Framework for Ocean Observations (the FOO)

> An outcome of OceanObs’09
» Codifies best practices

» Based on feedbacks between
» QObservations

System > Research
Framework: » Applications
=for: » GOOS, RCN, and other (e.g., IO

OS and SOQOS) all categorize thei

- 0 cean r key variables as
0 bse rvin g , Essential Ocean Variables (EOV
E 2 )
» GCOS focuses on Essential Clim
ate Variables (ECV5s)
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Global Climate Observing System (GCOS)

» GCOS is divided into three panels
» Atmospheric Observation Panel for Climate (AOPC)
» Terrestrial Observation Panel for Climate (TOPC)
» QOcean Observation Panel for Climate (OOPC)

» GCOS was designed to parallel the IPCC, and provide observations to the
IPCC

» GCOS is recognized by many high level organizations as the group tha
t:
» Lists key climate variables that should be measured

> Sets climate-related standards for those observations
» ECVs must be

» Important for climate processes

» Feasible to measure (including cost)

> Sufficiently accurate

GCOS » GOOS = WCRP oopc



Sets of EOVs and ECVs Are Not Consistent

» 100S Physical Variables:
> salinity, temperature, bathymetry, sea level, surface waves, surface (vecto
r) currents, ice concentration, surface heat flux, bottom characteristics
» 100S Meteorological variables are covered by GCOS
» GOOS Physical Variables:
> Based on GCOS Ocean variables
> Related GCOS Physical Variables:

> Surface: Sea-surface temperature, Sea-surface salinity, Sea level, Sea stat

e, Sea ice, Surface current, Ocean colour, Carbon dioxide partial pressure,
Ocean acidity, Phytoplankton.

» Subsurface: Temperature, Salinity, Current, Nutrients, Carbon dioxide parti
al pressure, Ocean acidity, Oxygen, Tracers

» Atmospheric: temperature, humidity, pressure, Rainfall, Photosyntheticly A
ctive Radiation (PAR), and many others




GOOS Strategic Mapping “

> http:/lists-ioc-goos.org/goos-strategic-mapping-graphic

Global conventions/ Societal Benefit Scientific Issue Essential Ocean Variable Observing
mandates network



http://lists-ioc-goos.org/goos-strategic-mapping-graphic

Links from Applications to EOVs

Global conventions/ Societal Benefit Scientific Issue Essential Ocean Variable Observing
mandates network
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Observation Network Link to ECV
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What | Need to Make the Case for Surface Fluxes

> Science issues
> Societal benefits
» Accuracy requirements
> Bias
» Random error (on a specific space and time scale, not per observation)

» Sampling constraints
» A plan to achieve the above
» If it is not feasible no sane agency will pay for it

GCOS » GOOS = WCRP oopc



Flux (and Wind Accuracies)
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Surface Temperature Processes
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SAMQOS Overview

Cruise maps for each vessel in 2013

« Routine collection and quality
evaluation of underway
meteorology and surface ocean
data from research vessels (RV)

« Position, course, speed, heading

»  Air temperature, humidity, winds,
pressure, radiation, precipitation

«  Sea temp., salinity, conductivity

« Research instrumentation
deployed by vessel operators

« Australia and New Zealand provide
only data from non-U.S. RVs

» 30 active vessels in 2013
« NOAA (14), USCG (1), NSF Polar
Program (2), WHOI (2), BIOS(1),
SIO (4), SOI (1), UW (1), UH (1),
Australia (2), New Zealand (1)

SAM OS http://samos.coaps.fsu.edu

Shipboard Automated Meteorological and Oceanographic System




Observation Density for Fluxes: 2005-today

« Density of 1-
minute
records that
include all
values
required for
flux
calculation

*  Observations
span
latitudes, but
low coverage
in some
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Shipboard Automated Meteorological and Oceanographic System




SAMOS Flux Overview

* |nput
» Air temperature, pressure, moisture value, wind speed, and sea
temperature (measured at height of sensor)

« Selecting SAMOS observations

» |nput values must have known instrument heights

» EXxclude data not passing automated and/or visual quality control
» Algorithms

« Smith et al. 1988, SAMOS variant of Bourassa (2006), and
COARE 3.5

«  Qutput

+ Latent and sensible heat flux; wind stress components; wind
speed, specific humidity, and air temperature at 10 m; roughness
length

SAM Os http://samos.coaps.fsu.edu

Shipboard Automated Meteorological and Oceanographic System




Smith'88 vs. SAMOS Flux Distributions

Sensible Heat Flux
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Seasonal Results

| Sen3|bIeHeat Flux _Latent Heat Flux __Stress

4‘ S‘u‘m‘r“n‘er | “Spring “\‘/‘\‘/int‘er

@
150°E 160°W 110°W  60°W  10°W  150° W 110°W  60°W  10°W T150°E 160°W  110°W  60°W  10°W
® : : [ . | S 00 |
20 -1§8 -10 -5 0 - 5 0.1 -0.075 0,05 -0.025 0.0 0.025 0.05 0.075 0.1

W/m? N/m?

2002 — 2003 seasonal average differences in SHF (left), LHF
(middle), and wind stress (right) for DJF (top row), MAM (2" row), JJA
(3" row), and SON (bottom row)




Seasonal SHF
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Seasonal LHF
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Sensible Heat Flux difference (W/m?)

Latent Heat Flux difference (Wlmz)

Monthly Box Plots
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Dec. 2002 — Nov. 2003 monthly box plots of SHF (top) and
LHF (bottom) difference over the Gulf Stream (left) and
Kuroshio Extension (right)

| * Monthly averaged

turbulent flux
differences are
more sensitive to
the background
environment

More spatial
variability than
seasonal
averages

Annual cycle is
better resolved
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Daily PDF’s of SHF (top) and LHF (bottom) difference
over the Gulf Stream (left) and Kuroshio Extension
(right) during selected high wind events

Daily Results

> Snapshots in the life

cycle of individual
synoptic-scale events
that can impact storm
evolution and upper
oceanic properties

» Despite the same

physical process
taking place over the
Gulf Stream and
Kuroshio Extension,
PDF shapes are
different




SST Gradients For Upwelling Example
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» There are substantial SST gradients over most of the ocean

s OODPC



Ekman Upwelling
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Ekman Upwelling Changes
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> Changes in Ekman Upwelling (Baroclinic case — control)
» These are an order (1) impact
» Many areas with >30% changes

s OODPC



> Biggest changes are on scale
s poorly captured in weather
models

» Need finer resolution models
with better boundary-layers

> Note that spatial scale of up
welling areas is smaller than
that of downwelling events

> We need to couple models o
n ‘fine’ spatial scales
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