

Listen to the ocean

Towards Improved Estimates of Ocean Heat Flux: The Role of Optics

Hayley Evers-King, Shubha Sathyendranath, Trevor Platt and Bob Brewin

Thanks to Diane Knapett and Stephane Saux-Picart.

Overview

- Personal introduction
- Recap on role of optics
- PML current work plan
- Optical model development
- Initial results
- Satellite data processing
- Thoughts and remaining questions

Personal introduction

PML

- Recently graduated with a PhD from University of Cape Town.
- Background is in optics sensitivity of ocean colour signals to variability in phytoplankton communities and application to Harmful Algal Bloom detection.
- Just started new position at PML in general marine Earth observation.
- Continuing Stephane's and Diane's work on TIEOHF

Role of optics in understanding ocean heat flux

- Light is absorbed (and scattered) by constituents present in water.
- Absorption varies with depth and is wavelength dependent.
- Phytoplankton (represented by [Chl a]) are highly variable throughout oceans.
- Need to incorporate the effects of variable phytoplankton on absorption and attenuation.

Plymouth Marine

PML current work plan

Under task 3. "Examine the sensitivity of estimated fluxes and the oceanic heat budget to changes in the optical properties of the water, using ocean-colour data and a light transmission model, combined with a General Ocean Turbulence model."

- Two main areas of focus at present:
 - 1. Sensitivity of SST, MLD and air-sea heat flux to variability in attenuation coefficient.
 - 2. Generation of maps of variability in heat budget calculations, with satellite data as inputs.

Optical model development

- Use of atmospheric and ocean optical models.
- Assume uniform distribution of [Chl](z) (for now!).
- Optimisation routine derives general relationship for I(z) profiles.
- Extinction files generated from this for GOTM.
- Comparison to typical assumptions made i.e. Jerlov.

Optical model development: Status and next Steps

- Development of experiments coupling GOTM model with optical model:
 - Extension of optical model to UV range
 - Need to improve parameterisation of depth dependence in phytoplankton absorption in the 350-400 nm range.
 - Addition of updated phytoplankton and related parameters
 - 3 component model of Brewin et al., (2014)
 - − 3 size classes: small, medium and large cells. ✓
 - Related ([Chl a] dependent) CDOM absorption and particle backscattering.
 - Realistic forcing.

- Time dependent attenuation profiles
 - 7am to 5pm.
 - GOTM currently run at 1 hour time step for 10 days.
- Other things to consider:
 - Meteorology wind in particular. Several experiments have been run...

Initial results - Temperature structure - No wind mixing

Standard Jerlov type 1A Chl 0.01 mg m⁻³

Plymouth Marine

Laboratory

PML

Chl 10 mg m⁻³

Initial results – Temperature structure with wind mixing

PML

Plymouth Marine Laboratory

Satellite data processing

 Decide on best parameterisation for K.

Plymouth Marine

PML

- Include UV and effect of solar zenith angle.
- Apply using OC-CCI data.

Thoughts and remaining questions

- Metrics needed calculation of MLD and heat flux from GOTM.
- Experimental structure increase run time/change meteorology?
- Non-uniform [Chl] needs looking at.
- Greater range of [Chl]? Different locations?
- Other optical constituents i.e. in coastal locations?
- Ideal output variables from GOTM/Ocean Colour?
- Toolkits for GOTM analysis

- Selection of subdomains etc based upon variability in optical properties?
- Cloud/Portal Provide Chl based LUTs for model parameterisation/likely sensitivity on regional basis/flags.

PML Plymouth Marine Laboratory

