TIE-OHF WP4 Progress

- WP4 tasks
- Estimates of errors and sources
- Experiments with retrieving errors in hypothetical

independent flux data by triple collocation

• Feasibility of performing triple collocation using

in situ, satellite, and analyses/forecasts

• Other: consideration of subconstance of subc

University of

WP41	Sensitivity studies and	IFREMER	Analysis of the new bulk parameterization (e.g. Fairall et al,, 2011) impact on flux	
			estimation over global ocean and over some specific regions such as the North	
		IORAS	Atlantic and tropical areas. Inputs for WP4.2.	
	algorithm	IORAS	fluxes in generated products to the use to different algorithms for flux computation	
	improvement		input for WP42. WP43	
		IFREMER	Calculation of LHF and SHF based on the new available remotely sensed winds and	Calculation
	Use		brightness temperatures and ESA CCI SST. Calculation will be performed over	completed over
	improved		global ocean at daily time scale and with a spatial resolution of 0.50°. Inputs for	one year with
WP42	retrieval		WP4.3	ESA CCI SST.
	wind speed	DWD	Provision of SSM/1 brightness temperatures	
	and humidity	UR	Available to advise on how best to use SST CCI data in the context	
		IFREMER	Comprehensive comparisons between satellite and in-situ flux estimates (see. Table	Completed.
			5.3). The results will be used for error characterization. Inputs for WP4.4	Report to be
				delivered to
		NEDSC	Triple collection error characterization of input variables to flux calculation. Here	ESA. Tho in citu
		NEROC	the use of a short-term forecast variable instead of an analysis allows for	dataset is heing
			independence among triple collocations. Simulation of error propagation in bulk	sought.
			flux estimates. Here, corrections to bulk fluxes are derived from an evaluation and	Coordination
	Evaluation		intercomparison of the actual fluxes taken from a numerical model and	with the WP43
	of data sets,		corresponding fluxes obtained with bulk algorithms.	error
WP43	Error			characterizatio
	characterizat			n (above) is
	10N			ongoing
		IORAS	Estimation of spatial and temporal innomogeneities associated with different error	
			WP45	
		DWD	Cooperation / Exchange with DFG Research Unit 1740: Atlantic Freshwater Cycle,	
			WP 2.1 (<u>http://for1740.zmaw.de/</u>), which has the objective to derive error estimates	
			for HOAPS flux products.	
		UR	Available to advise on uncertainty characteristics of SST CCI data and how these	
			Ican be propagated, as required	

WP4 Tasks

WP44	Ensemble generation	IFREMER	Accordingly to WP2 inputs, calculation of flux ensemble will be performed over global ocean for the period 1999-2009 at daily time scale and a spatial resolution of 0.50°. Inputs for WP4.5 and WP4.3.	
		IORAS	Estimation of probability density functions for different ensemble members, assessemnt of spread for fluxes fo different occurrences, input for WP45, WP46	
WP4.5	Consistency checks ("Cage Studies")	IFREMER	Make available WP4.2, WP4.3, and WP4.4 inputs	
		MIO , IORAS, UR, DWD, WHOI	Inputs from WP33, in particular delivery of uncertainty characteristics from the evaluation phase of the cage experiments.	
		NERSC	Global computation of bulk fluxes for each of a group of input datasets (e.g., HOAPS, Ifremer, AOflux, and SeaFlux) to remove variations owing to the method of flux calculation (with evaluation being subject to the typical non-Gaussian heat flux pdf and uncertainty in radiative flux)	Based on input from WP43, a Fisher-Tippet comparison in terms of PDF tails (Gulev and Belyaev 2012) is of interest
		IORAS	Generation of ensembles of surface flux estimates from reanalyses, VOS data and available to date satellite data for at least 3-4 "cages" in the midlatitude North Atlnatic, Mediterranean Sea, Red Sea, Tropical Pacific, inputs for WP41, WP43, WP44, WP46	

WP4 Tasks

	Sensitivity Examination S	IFREMER		
WP4.6		PML	Use OC-CCI products and a spectrally-resolved model of light transmission underwater (Sathyendranath and Platt 1988), to compute the penetration of solar radiation into the ocean. (PML) Combine these results with a one-dimensional general ocean turbulence model (Burchard et al. 1999) to study the sensitivity of the oceanic heat budget within the mixed layer and below the mixed layer, and of the air-sea exchange of heat, to the parameterization of light penetration in the ocean. (PML) Combine satellite-derived surface chlorophyll with parameterization of vertical structure in chlorophyll, for example as in Longhurst et al. 1995), to study the impact of vertical structure in optical properties on upper-ocean stability and heat budget, using the turbulence model. (PML)	
			air-sea interface on the diurnal variations in SST and hence on the heat budget of upper ocean and lower atmosphere and on air-sea fluxes. (PML)	
		IORAS	Quantitative estimate sof sensitivity of global, regional and local enegry fluxes to different types of errors, characterization of skills of generated product (local/regional/global) budgets, variability on different time scales	

Estimates of errors and sources

• Coupled Ocean–Atmosphere Response Experiment

(COARE) family of algorithms (WGASF 2000; Fairall et al.

2003; Brunke et al. 2003) target an accuracy of 5 W/m2

Uncertainties due to observational errors in variables

routinely measured and estimated by VOS (Josey et al.

1999; Brohan et al. 2006; Kent and Berry 2005) amount

to 15 W/m2 (or less with metadata)

sources

LHF RMS differences at OceanSites locations

sources

perhaps 10 W m/2

LHF bias at OceanSites locations

with retrieving errors in hypothetical independent flux data by triple collocation

truth
$$t = \alpha \beta e^{-\beta x} e^{-\alpha e^{-\beta x}}$$

buoy $x = t + 10 * \delta_x$

satellite $y = 1.1 * t + 20 * \delta_y + 5$

model $z = 0.9 * t + 50 * \delta_z - 5$

Gaussian errors δ (zero mean and standard deviation of 1)

with retrie errors in hypotheti independ flux data triple collocatio

truth

buoy

satellite

model

eving cal ent	Specified (calibration, std,bias)	Specified (calibration, std,bias)Retrieved following McColl et al. (2014) Extended triple collocation to correlation coefficients with respect to an unknown targetX : (1.0, 10, +0)X : (1.0, 9.9, +0) X : (1.0, 9.9, +0)	
by	x:(1.0,10, +0)		
n	y : (1.1, 20, +5)	y:(1.09, 19.9, +5)	
••	z:(0.9, 50, -5)	z:(0.89, 49.9, -5)	
	$-\beta x = -\beta x$	v Cianal-Naica	0.988
$t = \alpha \beta \epsilon$	$e^{-\rho x}e^{-\alpha e}$		0.962
x =	$t + 10 * \delta_x$		0.756
y = 1.1	$t + 20 * \delta_y + 5$		
z = 0.9	$t + 50 + \delta_z - 5$		

Gaussian errors δ (zero mean and standard deviation of 1)

Feasibility of performing triple collocation

 Independence of data...specifically of analyses

Atlantic Water and general circulation

Full year climatology from 1948-2006 hydrography

Transformation and ventilation hypotheses

- The Atlantic inflow loses 80-90% of its heat before it reaches the Arctic Ocean
- Heat exchanged across the Arctic Front may be similar to flux into the Barents Sea
- GSG-convection may contribute less to OW-production than Cold shelf water and the sea | Greenland Sea Gyre | and the 1995-Norwegian Seadensified AW (variability dominated by tr-2010 Skagseth&Mork 2012 obs 30°W 60°N Shelf and Mixing lce between Processes Atlantic and Arctic Water 00 30°F 60°E Freshwater from Atmospheric Cooling **Coastal Currents**

Distinguish Mode Water Regions

- All have strong property correlations with atmospheric indices(?)
- Mode waters are upper ocean waters
- Uniform temperature over thickness of few 100-m

Eighteen Degree Water

Deep and Bottom water High density mode water Low density mode water Subtropical mode water Subtropical gyre circulation

 Short renewal timescales

Rates & Mechanisms

Best available estimates of formation and dissipation rates:

- ≈15-20 Sv yr⁻¹ (indirect methods from air-sea fluxes)
- only about 5 Sv yr⁻¹ inferred to be injected seasonally into the subtropical gyre

18° Water enters North Atlantic thermocline:

- Ekman pumping, and
- Eddy driven subduction

18° Water and the Nutrient Gradient

18° Water & Potential Vorticity

The presence of 18° Water is reflected in a substantial 1000 km diameter 'bowl' of low potential vorticity at depths of 200-500m found just to the south of the Gulf Stream

Importance of 18° Water

- Dominant baroclinic and potential vorticity signal in the subtropical North Atlantic
- Substantial contribution to interannual variability in oceanic CO₂ uptake (0.03–0.24 Pg C yr⁻¹ from 1998-2001)

• Can prohibit deep-ocean nutrients from directly upwelling to the "euphotic" zone (wedge of cool, nutrient-poor water)

References

- http://www.nature.com/nature/journal/v420/n6915/abs/nature01253.html
- http://sam.ucsd.edu/sio210/lect_5/lecture_5.html
- http://www.nature.com/nature/journal/v437/n7059/full/nature03969.html
- http://www.whoi.edu/science/PO/people/tjoyce/clivar/clivarindx.htm
- http://www.climode.org/documents/climode_science_final_overview_RE Fs.pdf
- http://ams.allenpress.com.ezp1.harvard.edu/amsonline/?request=getdocument&issn=0894-8755&volume=013&issue=14&page=2550
- http://www.uib.no/jgofs/Final_OSC/Bates.pdf
- http://sam.ucsd.edu/sio210/gifimages/shallowoverturn.gif
- http://www.climode.org/Meetings/NOV_04/kwon_nov04.pdf

18° Water Dissipation

- starts w/ subduction & advection into the western subtropical gyre
- also due to lateral flows, diapycnal mixing and fluxes
- ~48% observed winter volume destroyed annually.

Air-sea flux evaluation with turbulence resolving model PALM

Background: The air-sea flux is evaluated with semi-empirical bulk flux-gradient algorithms (e.g. COARE by Fairall et al. JGR, 2003) or single-column models, which incorporate such algorithms (e.g. GOTM by Burchard et al. JPO, 2001; MLOM by Stephens **Problems**: (1) Yery sensitive to the choice of empirical functions and parameters (differences in satellite flux products); (2) Does not account for non-local nature of turbulence (large biases in non-neutrally stratified layers); (3) Produce inconsistent fluxes within atmosphere and the ocean **Solution:** For climatological estimations a set of correction to the bulk fluxes could be introduced based on evaluation and intercomparison of the actual flux taken from PALM runs and the flux obtained with bulk algorithms.

$Flux = C \cdot U \cdot \nabla T$

C is an empirical function (~10⁻³ in neutral, moderate wind PBL) with non-linear dependence on a number of parameters

Sensible (right) and latent (left) climatological September heat fluxes in two gridded satellite products (AOFLUX – upper raw; HOAPS3 – lower raw) using COARE algorithm with different